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Abstract - The analytical models used by commercial probes are no longer suitable for insulating materials. Indeed, these analytical 

laws do not allow the taking into account of the inertia of the probe and thermal flows that exist along the sensor. The solution is then to 

use an inverse problem technique in which a numerical model is used, in order to be able to take into account the totality of the different 

thermal phenomena, in an iterative process. However, in the case of configurations that require large numerical models, this type of 

technique can lead to very large computation times. The modal-type reduced models can efficiently decrease the computation time, 

without compromising the precision of the results. In order to verify the feasibility of this argument, we conducted a study where we use 

a modal reduced model in a measurement procedure to determine the thermal characteristics of a material by simply inserting a probe 

into a wall. This purely numerical study presents the influence of the order of the reduced model, the sensitivity of the probe, and the 

noise on the precision of the measurement. 
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1. Introduction 
In the field of construction, identifying the in-situ evolution of the thermal properties of materials, including insulators 

of bio-sourced origin, remains a current issue. We propose a technique for identifying thermal conductivity and heat capacity 

by inserting a simple probe in the material to be identified.  

This paper presents an identification method that uses modal-type reduced models, allowing an accurate description of 

the geometry of the probe and taking into account all the thermal phenomena.  

 

2. Problem Statement 
A simple solution for in-situ identification of thermal conductivity is the use of probes that use the hot wire technique 

[1]. The Hukseflux probe (Figure 1) is particularly appreciated for its robustness which, by the use of a simple analytical 

model, allows the immediate determination of the thermal conductivity. Unfortunately the latest work on this subject has 

shown the limits of this technique [2] since, in the case of insulators, we cannot neglect the inertia of the probe or its high 

conductivity. 

 

 

 

 
Fig. 1: TP02 Hukseflux probe. 
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2.1. Description of the Hot Wire Type Probe 

Consider the problem represented in Fig. 2 whereby the probe C is inserted into the insulator I, which rests on a 

simple support structure S. 

The contact resistance between C and I is negligible compared to the high resistivity of the insulation. The probe 

consists of different materials (Figure 3), including a C3 resistance that dissipates a power density of 36 m.W37,77.10   

It consists of a temperature measurement at point A. The set of problem parameters is specified in Table 1. The geometry is 

axisymmetric, i.e. T (r, z). An environment characterized by a heat transfer coefficient of 12 K.m.W10h  for a 

temperature of 16,18fT C  is considered. 

 

2.2. Numerical Model 

The thermal problem is expressed as a variational expression (Eq. 1). We note the domain SC   , is the 

boundary of the whole domain studied, g is the test function, c is the heat capacity, k is the thermal conductivity, h is the heat 

transfer coefficient, and  is the heat source: 
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Fig. 2: Representation of the physical problem 

 

 

Fig. 3: Representation of probe components (a) exact proportions (b) dilated radial scale 
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Table 1: Component features. 

 

 Insulator 

I 

Support 

S 

Probe 4C3C2C1CC    

 C1 : Steel C2 : Resin C3 : Resistance C4 : Cords 

k [W.m-1.K-1] Ik  0,2 16 0,30 19,5 400 

c [J.m-3 .K-1] Ic  1,97.10-6 3,95.10-6 1,28.10-6 3,38.10-6 3,42.10-6 

 

A P1 type finite element discretization leads to a matrix system (Eq. (2)) whose size is characterized by the number of 

nodes N of the mesh, with 20000N  . Calculations are performed by a laboratory code in C ++. 

 

(𝑐𝐼 𝐂𝐈 + 𝐂)𝐓̇ =  (𝑘𝐼 𝐊𝐈 + 𝐀)𝐓 + 𝐔 (2) 

 

3. Modal Reduced Model 
3.1. Presentation of the Technique 

The principle of modal reduction methods is to decompose the thermal field  t,MT  over a small number n of known 

spatial functions )M(V
~
i , which then makes it possible to obtain an estimate  t,MT

~
: 

 

  





Nn

1i
ii )M(V

~
)t(x~t,MT

~
 (3) 

 

where )t(x~i  are the unknown excitation states of these spatial functions. If the number of functions n is small with respect 

to N, the problem is reduced. The next step is to determine the n excitation states xi(t) compared to N temperature changes 

T(M,t). For this study, the BERM method [3, 4] was used, which is broken down into three stages: 

 The complete computation of the N so-called Branch vectors (Eqs. (4) and (5)), which forms a basis for any type of 

thermal problem (Eq. (1)), including when the different parameters of the equation vary: 

 

∀𝑀 ∈ Ω ∪ Ω𝐼 , 𝑘𝑚∇⃗⃗ (∇⃗⃗ 𝑉𝑖) = z𝑖c𝑚V𝑖 

 

(4) 

 

∀𝑀 ∈ Γ,                   𝑘𝑚∇⃗⃗ 𝑉𝑖. n⃗⃗  ⃗ = −z𝑖  V𝑖   (5) 

 

where k and c are simple space functions and the index  6...,,1m   corresponds to each material of the domain. 

The boundary condition (Eq. (5)) is an abstract condition that involves the eigenvalue zi of the Vi mode. The number of 

Steklovs   ensures the dimensional homogeneity of the boundary condition and avoids the degeneration of the branch modal 

problem [4], that is to give a comparable importance to the two equations of the system (4) and (5): 
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(6) 

 The reduction of the base is carried out by the amalgam method. It consists of reconstructing n new modes jV
~

by 

linear combinations of the initial modes iV : 
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The choice of this combination is then based on a reference case for which the excitation states xi(t) associated with the 

initial complete base are known. From these coefficients the distribution of the set of modes Vi on the reduced basis jV
~

 is 

made, as well as the calculation of the weighting factors p,j . 

 The reduced problem is defined by the state equation obtained by projecting the heat equation (Eq. 1) onto the reduced 

basis. By noting V
~

as the matrix comprising the entirety of the n reduced modes jV
~

 expressed in discrete form, and X
~

as 

the vector of the n associated excitation states, we have: 
 

(𝑐𝐼 𝐕̃
𝑡𝐂𝐈 𝐕̃ + 𝐕̃𝑡𝐂𝐕̃)𝐗̇̃ =  (𝑘𝐼 𝐕̃

𝑡𝐊𝐈𝐕̃ + 𝐕̃𝑡𝐀𝐕̃)𝐗̃ + 𝐕̃𝑡𝐔 (8) 
 

Expressing Eq. (8) is a more compact form, we have: 

 

(𝑐𝐼 𝐋𝐈  + 𝐋)𝐗̇̃ =  (𝑘𝐼 𝐌𝐈 + 𝐌)𝐗̃ + 𝐍 (9) 

 

This relationship has n degrees of freedom. Therefore it is quickly solved, and then provides access to the entire 

temperature field by the relation (Eq. (3)). 

 
3.2. Reduction Results 

Since the thermal parameters of the insulator are unknown and are to be identified by this reduced model (Eq. (9)), we 

then choose the values of the thermal conductivity Ik  and the heat capacity Ic  of the insulator for the calculation of the 

Branch base and the reference model used during the reduction by Amalgam. These values are different from the values that 

will subsequently be identified as the exact values. The following characteristics of the insulation are chosen for the 

construction of the reduced model: 

casebase: 11
base K.m.W01,0k  et 3 125000 . .basec J m K   

The Steklov’s number (Eq. (6)) is then: 12 K.m.W5580  . Model simulation is then performed, which is compared 

to the complete model for two configurations: 

 the reference configuration: casebase 

 a different configuration, which we choose identical to the one we will seek to identify: 

caseexact: 
11

exact K.m.W0306,0k  et 
13

exact K.m.J30878c   

Figure 4 shows the evolution of the mean errors   and quadratic errors at the measurement point A , of the reduced 

model compared to the complete model for these two configurations during the time t of the simulation. We thus define: 
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(10) 

 

     dttTtT
~

t

1

t

2
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

  (11) 

 

It is noted that there is an exponential decay for the mean error, unlike the localized error at the measurement point. 

Indeed, the reduction process minimizes the average error. In the case where a simulation is carried out for a problem in 

which the insulation has the same characteristics as those used for the construction of the reduced model, the latter is very 

effective, since an order of n = 50 modes leads to an error at the measuring point of the order of C01,0A  . However, for 

very different insulator characteristics, the errors increase by an order of magnitude: always for n = 50 modes, we obtain 

C1,0A  . Here we see the importance of choosing the appropriate reference case to be used in the amalgam procedure. 

The identification procedure model will then depend on the accuracy of the measurement and the sensitivity of the probe 

with regards to the quantities identified. 
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Fig. 4: Mean error  and error at the measurement point A  of the reduced model. 

 

4. Identification Technique   
4.1. Principle 

The objective is to identify the parameter values of thermal conductivity Ik  and heat capacity Ic  of the insulator in 

which the measurement probe is inserted. The latter is provided with a single measuring point (point A in Fig. 3), which 

corresponds to the observable Y, and which is connected to the temperature field T via an observation matrix E. Given the 

size of the discrete problem, it is possible to use the modal formulation presented previously to reduce the size of the inverse 

problem: 

 

𝐘 = 𝐄 𝐓 = 𝐄 𝐕̃ 𝐗̃ (12) 

 

The iterative identification process is based on the minimization of a quadratic criterion built on the difference between 

the measurement  itY  at the point A (calculated with the complete model (Eq. 2) with added noise and the result of the 

simulation Ŷ  performed by the reduced model (Eqs. (3), (9) and (10)) for the estimated parameters Ik̂  and Iĉ  at each 

iteration: 

 

                
2

mesn

1i
IIii ĉ,k̂,tŶtY

2

1



  (13) 

 

This minimization procedure uses a non-linear programming method based on a trusted region algorithm (offered by 

Matlab®), the principle of which is to replace the initial optimization problem with a series of sub-problems, which are 

simpler to solve. 

 

4.2. Sensitivity Analysis 
Because of the reduced sensitivities of the measurement to the variations of thermal conductivity and heat capacity (Eq. 

(14)), a sensitivity study is conducted to ensure the relevance of the measurement point used to carry out the identification. 
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Figure 5 shows the evolution of these parameters over time. The two curves are not correlated, which makes it possible 

to simultaneously identify these two parameters. However, the measurement probe is mainly sensitive to a variation of 

thermal conductivity. We can expect a lack of precision as to the identification of the volumetric heat capacity. 

 

  
Fig. 5: Sensitivity study. 

 

4.2. Identification Results 
The estimation without measurement noise is performed for different reduction orders. Let us recall that the model built 

from kbase and cbase is different from the desired pair. Table 2 summarizes the results obtained for different reduction orders 

as well as for the complete model. Here we note k  and c , as the relative errors of the average value identified, and T as 

the quadratic error between the measurement and the temperature built with the parameters identified: 

 

exact

exactI

k
k

kk̂ 
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exact
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cĉ 
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(15) 
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Table 2: Identification without measurement noise. 

 

n 
Ik̂  k  Iĉ  c T tcpu (s) 

30 0,0299 2,3% 40151 30% 0,012 0,4 

100 0,0303   1% 36966 20% 0,008 2,3 

200  1% 27299 11,5% 0,005 4,4 

Complete 

model 
 1% 28203 8.6% 0,003 1105 

 

As expected, the identification of the conductivity is much more accurate than that of the volume capacity. The 

calculation of the temperature error recalculated with the identified parameters (T) is very low and shows the lack of 

sensitivity for the temperature with respect to the volumetric capacity. The need to use a reduced model characterized by a 

sufficiently large order (n = 200) is needed to approach the value of the capacity with the same level of error as with the 

complete model. However, even for this reduction order, the computation time remains low compared to the time required 

for the complete model for the identification procedure (computing time gain equal to 250). 
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Tests are carried out with two measurement noise values. 300nI   identification tests are conducted for each of them  

to obtain reliable average values of the identified parameters. The results are shown in Table 3, and as histograms in Figures 

6 and 7. In this table we note: 

 Ik  and Ic the average values of the identified parameters defined by: 
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In
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i
I

I
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k                               
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 kstd  and cstd  the standard deviations that characterize the spreading of the conductivity and capacitance values that 

were identified during the In  tests (for a measurement noise B and reduction order n fixed): 
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Fig. 6: Identification for a B = 0.05°C noise. 

 

  
Fig. 7: Identification for a B = 0.1°C noise. 

 

The greater the measurement noise, the more the values identified are spread over a wide range of values obtained. 

However, there are identical average values to the values identified without noise measurements: provided a sufficiently 

large number of measurements, it is possible to overcome the measurement noise. Thus, the most important parameter 

remains the reduction order which, given the probe's lack of sensitivity to the capacitance, causes a non-negligible error on 

the latter. 
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It is noteworthy that the different quadratic errors of the reconstructed temperatures T systematically correspond to the 

measurement noise, whatever the identification error of the volume capacity. These observations are entirely consistent with 

the lack of probe sensitivity with respect to the volumetric capacity, as shown in Fig. 7. 

 
Table 3: Identification with measurement noise. 

 

B (°C) n Ik  kstd  k Ic  cstd  c T 

 30 0.0299 0.053.10-3 2.3% 40179 446 30.1% 0.0515 

0.05 100 0.0303 0.056.10-3 1% 36987 430 19.8% 0.0508 

 200 0.0309 0.064.10-3 1% 27303 385 11.5% 0.0502 

 30 0.0299 0.096.10-3 2.3% 40188 798 30.1% 0.1007 

0.1 100 0.0303 0.110.10-3 1% 36999 866 19.8% 0.1004 

 200 0.0310 0.13.10-3 1.3% 27240 791 11.8% 0.1000 

 

5. Conclusion 
This study has shown that an inverse procedure based on the use of a reduced numerical model can allow very fast in-

situ identification of thermal conductivity for insulating materials. As far as the heat capacity is concerned, given the low 

probe sensitivity to this parameter, a coarser estimate is possible, provided that an accurate modal reduced model is used.  

These first results are promising and open to several perspectives. First of all, it must be possible to improve the 

procedure by integrating the reduction phase of the base in the reverse procedure. In this way, as iterations proceed, the 

reduced base should be better adapted to the identified parameters. Moreover, the improvement of the sensitivity of the probe 

to the heat capacity will require the design of a new type of probe in which the heat source and the temperature measure (s) 

will be separated by the insulation to characterize (bi-probes or tri-probes type model). This new type of probe can only be 

modelled by a 3D geometry, characterized by a large number of degrees of freedom. For such a problem, the use of a modal 

model will be all the more interesting. 
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