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Abstract - We discuss the numerical modelling of heat transport with contaminated water into unsaturated-saturated porous media. We 

focus on the determination of a heat exchange with the matrix of the porous media and adsorption of a contaminant. Numerical modelling 

includes the influence of temperature and adsorbed contaminant on hydraulic permeability. We also discuss the water volume extension 

due to the temperature change. This is motivated by hydrothermal isolation properties of building facades under the influence of external 

weather conditions. Also, contaminant dissolved in the water could be interpreted, e.g., as the salt which can degrade the quality of 

concrete and other building elements. Dependence of hydraulic permeability on the temperature, concentration of a contaminant, amount 

of adsorbed contaminant and saturation is discussed on the base of van Genuchten empirical law for unsaturated porous media. An 

efficient numerical approximation is proposed by means of which we solve the direct and inverse problems of the complex model. The 

determination of the model parameters we solve by inverse methods. In our numerical experiments, we show the significant sensitivity 

of hydraulic permeability on temperature and adsorption and the weak sensitivity on water extensions in the physically relevant 

temperature change. For the solution of inverse problems in laboratory experiments, we suggest the 3D sample in a cylindrical form 

which enables many experimental scenarios created by suitable boundary conditions. 
 

Keywords: Water and heat transport, Heat energy exchange, Contaminant adsorption, Porous media, Numerical modelling. 

 

 

1. Introduction 
In this contribution, we discuss the heat exchange of infiltrating contaminated water with the porous media matrix 

assuming the unsaturated-saturated flow with contaminant adsorption. The adsorbed contaminant (e.g. salt) can decrease the 

quality of concrete and other building elements. Also, the adsorbed contaminant can decrease the porosity and together with 

transported heat significantly affect the hydraulic permeability. The influence of external weather conditions is included in 

the considered model. Especially, we focus on the numerical modelling of the heat energy exchange between the water in 

pores and the matrix with its heat conduction property. Moreover, we discuss contaminant transport and adsorption model. 

The complex mathematical model is strongly coupled with hydraulic permeability influenced by all transported attributes. 

Scaling this model is its important part. The mathematical model consists of the coupled system of strongly non-linear PDE 

of elliptic-parabolic type. The flow of water in unsaturated-saturated porous media is governed by Richard’s equation. The 

heat energy of water is subject to the convection, molecular diffusion, dispersion which are driven by capillary and gravitating 

forces band also by external forces due to water and heat fluxes arising by weather conditions. The mathematical models are 

well-known and presented in many monographs, e.g. [1], with a very complex list of quotations in this field. The 

fundamentals of heat and mass transfer with many applications are discussed in [7]. In our setting the heat energy 

transmission from water in pores to the porous media matrix is our contribution and we model it analogously to the reversible 

adsorption of the contaminant in unsaturated porous media, see e.g. [6]. Additionally, we take into account the heat 

conduction of the porous media matrix itself and the adsorption of the contaminant. The adsorbed contaminant can influence 

the heat balance energy in the form of the source term. This could be interpreted as a latent heat appearing at the creation of 

the adsorbed contaminant. But it would be a rather rough approximation of precipitation of salt due to 

evaporation/condensation. A precise mathematical model for this phenomenon requires multiphase flow in porous media 
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including water, vapour and air phases. Some simplified mathematical model with an application and many quotations 

can be found in [8]. Our model is only one phase model and the phase of air is neglected. The heat conduction in porous 

media (without water in pores) is a difficult task and it is modelled by the homogenization method. In our setting, we 

assume very simple heat conduction in the matrix, where heat conduction is obtained separately by solving a 

corresponding inverse problem and using practical measurements with the dry matrix. In our original experimental 

scenario, we determine both transmission coefficient and heat permeability in the matrix via the solution of the inverse 

problem. 

In this scenario, we measure some characteristics strongly depending on this heat exchange avoiding water-matrix 

temperature jump. The reliability of this scenario supported by correct numerical approximation we demonstrate in our 

numerical experiments. The additional measurements required in solving the inverse problem are non-invasive based on 

input/output characteristics in laboratory conditions we realize on a 3D sample which is immersed into a bigger cylinder 

with infiltrated contaminated water. This setting is sketched in the following figure. 

 

 
 

Fig. 1: Setting of the sample in experimental scenarios. 

 

In the numerical method, we use operator splitting method with flexible time discretization where successively 

along with the small-time interval we separately solve water flow, transport of the contaminant with adsorption, heat 

transport by water and then in a matrix including the heat exchange. In the solution of water flow, we follow the 

approximation strategy introduced in and also used in well-known software Hydrus (see [2]). To control the correctness 

of our numerical results, we have also developed an approximation scheme (see [6] used only for 1D) based on the 

reduction of the governing parabolic system to the solution of the stiff system of ordinary differential equations. This 

approximation simultaneously solves the whole system, but computational time is significantly larger than that one in 

the present method. The main reason is that the system is stiff and too large when using necessary space discretization. 

Comparisons justify our method which is significantly quicker and therefore applicable in the solution of inverse 

problems scaling the model parameters. Moreover, the present method could be efficiently used also for solving 3D 

problems. 

 

2. Mathematical model 
2.1. Water flow model 

The flow is modelled by the hydraulic permeability 𝐾 = 𝐾𝑠𝑘(ℎ), with 
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𝐾𝑠 = 𝜅0

𝜌𝑔

𝜇
, (1) 

where 𝜌 and 𝜇 are the density and the dynamical viscosity of the water, respectively. The function 𝑘(ℎ) describes the capillary 

forces and it is linked with the pressure head ℎ, or on the corresponding effective saturation (see [4]). We note that these 

parameters depend on water temperature 𝑇𝑤, adsorbed contaminant 𝑆 and contaminant concentration 𝐶𝑤 in infiltrated 

contaminated water. The coefficient 𝜅0 depends only on the structure of the porous medium and 𝑔 is the gravitational 

acceleration. We consider more general form of hydraulic permeability 𝐾(𝑇𝑤 , 𝐶𝑤, 𝑆, ℎ) = 𝐾𝑠(𝑇𝑤 , 𝐶𝑤, 𝑆) ⋅ 𝑘(ℎ). Here,  

𝐾𝑠 = 𝐾(𝑇𝑤 , 𝐶𝑤 , 𝑆, 0) is the hydraulic permeability in fully saturated porous media. We consider 𝑘  

in a van Genuchten/Mualem empirical form (see [4]) 

 

𝑘(𝜃) = 𝜃
1
2(1 − (1 − 𝜃

1
𝑚)𝑚)2, (2) 

 

where by 𝜃 we denote the effective saturation defined as 

 

𝜃 = (𝜃 − 𝜃𝑟)/(𝜃𝑠 − 𝜃𝑟) (3) 

 

with fully saturated 𝜃𝑠 and residual 𝜃𝑟 water contents, respectively. The capillary pressure vs. saturation (fundamental 

relation) we consider in the form 

𝜃 =
1

(1 + (𝛼ℎ)𝑛)𝑚
, (4) 

 

where 𝑛 > 1, 𝑚 = 1 −
1

𝑛
 and 𝛼 < 0 are the soil parameters in the van Genuchten-Mualem (empirical) ansatz. 

The adsorbed contaminant decreases the volume of poor’s and thus, we have 𝜃𝑠 − 𝑆 in the place of 𝜃𝑠 and consequently in 

what follows we consider (for simplicity) 

 

𝐾𝑠(𝑇𝑤, 𝐶𝑤, 𝑆) =
𝜃𝑠 − 𝑆

𝜃𝑠
𝐾𝑠(𝑇𝑤, 𝐶𝑤, 0). (5) 

 

In the saturated zone we have (Darcy’s law) 𝑘(ℎ) ≡ 1 and 𝜃 ≡ 𝜃𝑠. The influence of dynamical viscosity on 𝐶𝑤, 𝑇𝑤 can 

be found on tables for discrete values of variables and we use a spline interpolation of them in our computations. Richard’s 

equation modelling the contaminated water flow reads as follows 

 

𝜕𝑡𝜃 = 𝛻. (𝐾(𝑇𝑤, 𝐶𝑤, 𝑆, ℎ)𝑨(𝑥)𝛻(ℎ + 𝑧)) = div(𝐾(𝑇𝑤, 𝜌, 𝑆, ℎ)𝑨(𝑥)𝛻(ℎ + 𝑧)) + 𝜕𝑡𝐸, (6) 

 

where the matrix A describes the changes in conductivity according to the space structure (in our experiments A = I). The 

saturation change 𝐸 due to temperature change is modelled by an ODE 

 

𝜕𝑡𝐸 = 𝜅𝑤(𝑇𝑤)𝜃
𝜎

𝑐𝑤
(𝑇𝑤 − 𝑇𝑚), (7) 

 

where 𝑐𝑤 is the water heat capacity, 𝜅𝑤 is assumed to be a physical coefficient which measures the extension of unique water 

volume by unique temperature change. The heat transmission coefficient we denote by 𝜎 and 𝑇𝑚 is the matrix temperature. 

 
2.2. Contaminant transport model 
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The flux of dissolved contaminant with concentration 𝐶𝑤 denoted by J𝐶𝑤
 is 

 

J𝐶𝑤
= 𝜃(v𝐶𝑤 − D). 𝛻𝐶𝑤. (8) 

 

Here, v is the seepage velocity of the contaminated water linked with the flux �⃗� = v𝜃 in flow model 

 

�⃗� = −𝐾(𝑇𝑤, 𝐶𝑤, 𝑆, ℎ)A(𝑥). 𝛻(ℎ + 𝑧). (9) 

 

Denote by D the dispersion matrix with the components 

 

𝐷𝑖𝑗 = (𝐷0 + 𝛼𝑇|v|)𝛿𝑖𝑗 +
𝑣𝑖𝑣𝑗

|v|
(𝛼𝐿 − 𝛼𝑇), (10) 

 

where 𝛼𝐿 , 𝛼𝑇 are longitudinal and transversal dispersivities, respectively, 𝛿𝑖𝑗 is the Kronecker delta and 𝐷0 is the molecular 

diffusion coefficient. Then, the contaminant transport model is 

 

𝜕𝑡(𝜃𝐶𝑤) + div(�⃗�𝐶𝑤 − 𝜃D𝛻𝐶𝑤) = −𝜌𝑚𝜕𝑡𝑆. (11) 

 

where 𝑆 is adsorbed contaminant by the unique mass of porous media. The adsorption of the contaminant is governed by the 

ODE 

𝜕𝑡𝑆 = 𝜅(𝛹(𝐶𝑤) − 𝑆), (12) 

 

where 𝜅 is the sorption rate coefficient describing adsorption kinetics and 𝛹 is a sorption isotherm, which can depend on 

(𝑇𝑤 , 𝐶𝑤 , 𝑆) and ρm is the matrix density. It belongs to a chosen class of functions with tuning parameters underlying for 

determination via the solution of the corresponding inverse problem. 

 
2.3. Heat energy transport model 

Conservation of water heat energy is expressed in PDE 

 

𝑐𝑣𝜕𝑡(𝜃𝑇𝑤) − div(−𝑐𝑣�⃗�𝑇𝑤 + 𝜃D𝛻𝑇𝑤) = 𝜎𝜃(𝑇𝑚 − 𝑇𝑤), (13) 

 

where 𝜎 is a transmission coefficient, 𝑐𝑣�⃗�𝑇𝑤 being the convective part, and the diffusive part is modelled by dispersion 

matrix D. 

 
2.4. Heat conduction in porous media matrix 

A simple heat conduction model in the matrix is considered in the form 

 

𝑐𝑚𝜕𝑡𝑇𝑚 − 𝜆𝛥𝑇𝑚 = 𝜎𝜃(𝑇𝑤 − 𝑇𝑚), (14) 

 

where 𝜆 - heat conduction coefficient and 𝑐𝑚- heat capacity of the matrix. In the solution of inverse problems we consider 

radial symmetric cylindrical sample, and thus we rewrite the considered model in cylindrical coordinates. 

 

3. Mathematical model in cylindrical coordinates 
Our sample is with radius R and height Z. We transform the mathematical model using cylindrical coordinates (r; z). 

 
3.1. Water flow 
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Then the governing PDE for infiltration (in gravitational mode) reads as follows 

𝜕𝑡𝜃(ℎ) =
1

𝑟
𝜕𝑟(𝑟𝐾(𝑇𝑤, 𝜌, 𝑆, ℎ)𝜕𝑟ℎ) + 𝜕𝑧(𝐾(𝑇𝑤, 𝜌, 𝑆, ℎ)(𝜕𝑧ℎ − 1)) + 𝜕𝑡𝐸, (15) 

𝜕𝑡𝐸 = 𝜅(𝑇𝑤)𝜃
𝜎

𝑐𝑤
(𝑇𝑤 − 𝑇𝑚). (16) 

 

The water flux in cylindrical coordinates is of the form 

 

𝐪 = −(𝑞𝑟 , 𝑞𝑧)𝑇, (17) 

𝑞𝑟 = 𝐾(𝑇𝑤, 𝐶𝑤, 𝑆, ℎ)𝜕𝑟ℎ, 𝑞𝑧 = 𝐾(𝑇𝑤, ℎ)(𝜕𝑧ℎ − 1). (18) 

 
3.2. Heat energy transport by water 

D is of the form 

 

D = (
𝐷1,1 𝐷1,2

𝐷2,1 𝐷2,2
) = (

𝛼𝐿((𝑞𝑟)2 + 𝛼𝑇((𝑞𝑧)2 (𝛼𝐿 − 𝛼𝑇)(𝑞𝑟𝑞𝑧)

(𝛼𝐿 − 𝛼𝑇)(𝑞𝑟𝑞𝑧) 𝛼𝐿((𝑞𝑧)2 + 𝛼𝑇((𝑞𝑟)2)
1

|�⃗�|
 (19) 

 

Denote by 

𝑄𝑇𝑟 = −𝑞𝑟𝑇𝑤 + 𝜃(𝐷1,1𝜕𝑟𝑇𝑤 + 𝐷1,2𝜕𝑧𝑇𝑤 + 𝐷𝑜𝜃 (20) 

𝑄𝑇𝑧 = −𝑞𝑧𝑇𝑤 + 𝜃(𝐷2,1𝜕𝑟𝑇𝑤 + 𝐷2,2𝜕𝑧𝑇𝑤 + 𝐷𝑜𝜃. (21) 

 

Then, the heat energy transport reads as 

 

𝑐𝑣𝜕𝑡(𝜃𝑇𝑤) − (
1

𝑟
𝜕𝑟(𝑟𝑄𝑇𝑟) + 𝜕𝑧(𝑄𝑇𝑧) = 𝜎𝜃(𝑇𝑤 − 𝑇𝑚). (22) 

 
3.3. Contaminant transport 

We define contaminant fluxes 𝑄𝐶𝑟, 𝑄𝐶𝑧 in the same way as 𝑄𝑇𝑟 , 𝑄𝑇𝑧, where we replace 𝑇𝑤 by 𝐶𝑤. Then we rewrite 

the heat transport equation replacing 𝑇𝑤 , 𝑄𝑇𝑟, 𝑄𝑇𝑧 by 𝐶𝑤 , 𝑄𝐶𝑟 , 𝑄𝐶𝑧 and obtain contaminant transport equation in cylindrical 

coordinates. 

 
3.4. Heat conduction in the porous media matrix 

For heat conduction in the matrix 𝑇𝑚. we obtain 

 

𝑐𝑚𝜕𝑡𝑇𝑚 − 𝜆 (
1

𝑟
𝜕𝑟(𝑟𝑄𝑇𝑚) + 𝜕𝑧(𝜕𝑧𝑇𝑚))) = 𝜎𝜃(𝑇𝑤 − 𝑇𝑚). (23) 

 

where 𝑄𝑇𝑚
𝑟 = 𝜕𝑟𝑇𝑚. 

These governing equations are completed by corresponding boundary conditions including the external driven forces. 

For simplicity, we assume that on the boundary there are prescribed fluxes or values of the unknown ℎ, 𝐶𝑤, 𝑇𝑤 , 𝑇𝑚 and a 

combination of them. In fact, also water and heat energy transmission from external driven forces into facade could be 

considered and the corresponding transmission coefficient could be scaled by the solution of the inverse problem. 

 
3.5. Influence of adsorbed contaminant on heat energy equation 

Our mathematical model can be easily extended to the case when adsorption process is linked with heat energy gains or 

loses. The additional heat source term can be modelled by means of 𝐻𝑇 



 

 

 

 

 

 

 

HTFF 115-6 

 

𝐻𝑇 = 𝑠𝑖𝑔𝑛(𝜕𝑡𝑆)𝐻(𝑠𝑖𝑔𝑛(𝜕𝑡𝑆))𝜕𝑡𝑆, (24) 

 

where 𝐻(1) is heat energy gain and 𝐻(−1) is heat energy lose of unite mass of adsorbed contaminant. The term 𝐻𝑇 we 

add to the heat transport equation (22). 

 

4. Numerical method 
In our approximation scheme we apply operator splitting, flexible time stepping and a finite volume method in 

space variables. The time derivative we approximate by backwards difference and then we integrate our system over the 

angular control volume 𝑉𝑖,𝑗 with the corners  𝑟𝑖±1/2, 𝑧𝑗±1/2 and with the length (𝛥𝑟, 𝛥𝑧) of the edges.Then, our 

approximation linked with the inner grid point (𝑟𝑖, 𝑧𝑗) at the time 𝑡 = 𝑡𝑘 (we will use 𝐾(𝑈) : = 𝐾(𝑇𝑤
𝑘−1, 𝐶𝑤

𝑘−1, 𝑆𝑘−1, ℎ)) 

is 

 

𝜃(ℎ) − 𝜃(ℎ𝑘−1)

𝜏
𝛥𝑟𝛥𝑧 −𝛥𝑧

𝑟𝑖+1/2

𝑟𝑖
[
𝐾(𝑈𝑖+1) + 𝐾(𝑈)

2
(

ℎ𝑖+1 − ℎ

𝛥𝑟
)]

+𝛥𝑧
𝑟𝑖−1/2

𝑟𝑖
[
𝐾(𝑈) + 𝐾(𝑈𝑖−1)

2
(

ℎ − ℎ𝑖−1

𝛥𝑟
)]

−𝛥𝑟 [
𝐾(𝑈𝑗+1) + 𝐾(𝑈)

2
(

ℎ𝑗+1 − ℎ

𝛥𝑧
− 1)]

+𝛥𝑟 [
𝐾(𝑈) + 𝐾(𝑈𝑗−1)

2
(

ℎ − ℎ𝑗−1

𝛥𝑧
− 1)] =

𝐸 − 𝐸𝑘−1

𝜏
𝛥𝑟𝛥𝑧.

 (25) 

 
4.1. Quasi-Newton linearization 

In each (𝑟𝑖, 𝑧𝑗) we linearize 𝜃 in terms of ℎ iteratively (with iteration parameter l) following [Cellia at all] in the 

following way 

 

𝜃(ℎ𝑘,𝑙+1) − 𝜃(ℎ𝑘−1)

𝜏
= 𝑅𝑘,𝑙

ℎ𝑘,𝑙+1 − ℎ𝑘,𝑙

𝜏
+

𝜃𝑘,𝑙 − 𝜃𝑘−1

𝜏
, (26) 

 

where 

𝑅𝑘,𝑙 =
𝜕𝜃𝑘,𝑙

𝜕ℎ𝑘,𝑙
= (𝜃𝑠 − 𝜃𝑟)(1 − 𝑛)𝛼(𝛼ℎ𝑘,𝑙)𝑛−1(1 + (𝛼ℎ𝑘,𝑙)𝑛)−(𝑚+1) (27) 

 

for ℎ𝑘,𝑙 < 0, else 𝑅𝑘,𝑙 = 0. We stop iterations for = 𝑙∗ , when ℎ𝑘,𝑙∗+1 − ℎ𝑘,𝑙∗
≤ 𝑡𝑜𝑙𝑙𝑒𝑟𝑎𝑛𝑐𝑒 and then we put ℎ𝑘 : = ℎ𝑘,𝑙∗+1. 

Finally we replace the nonlinear term 𝐾(𝑈𝑘) by 𝐾(𝑈𝑘,𝑙), then our approximation scheme became linear in terms of ℎ𝑘,𝑙+1. 

Generally, we speed the iteration by a special construction of starting point ℎ𝑘,0 ≈ ℎ𝑘−1 and using suitable damping 

parameter in solving corresponding linearized system. Solution of complex system by operator splitting method. To obtain 

approximate solution for temperature in water and matrix at the time section 𝑡 = 𝑡𝑘 when starting from 𝑡 = 𝑡𝑘−1 we use the 

obtained flow characteristics from 𝑡 = 𝑡𝑘 for 𝜃𝑘, ℎ𝑘 and �⃗�𝑘 and for matrix 𝐷
𝑘
. 

To obtain approximation linked with the boundary points we apply the same strategy of FVM where the control volume 

𝑉𝑖,𝑗 is only half or quoter of the 𝛥𝑟𝛥𝑧 corresponding to the inner grid points. All iterations we realize in flow part of the 

model thanks to the operator splitting strategy. The other model variables are taken from the time section 𝑘 − 1. The 

approximation of other model equation is very similar and must be done carefully for flux �⃗� and matrix �⃗⃗⃗�. 
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5. Inverse problems 
We choose the optimal experimental scenarios for determination of all model parameters which we restore successively. 

The determination of parameters 𝐾𝑠, 𝑛, 𝛼,𝛼𝐿  and 𝛼𝑇 we have discussed in our previous contributions (see [5],[6]). We shortly 

discuss the determination of transmission coefficient 𝜎 and matrix heat conduction 𝜆, where we discuss the influence of 

𝑇𝑤 , 𝐶𝑤 , 𝑆 which was neglected (because of a reduced model) in our previous contributions. By means of our 3𝐷 sample we 

can choose a suitable input/output boundary conditions to create not invasive and relative simple measurements for 

determination of required model parameters via the solution of inverse problems. To validate the reliability of the used 

scenario we compute the corresponding direct problem (when model parameters are given) and we create the data (original) 

corresponding to chosen characteristics. Then, we apply some noise (generated by random function) to the original data and 

these will represent our measurements of corresponding characteristics. Finally, we forget the original model data and 

iteratively we construct the new (optimal) model data, minimizing the distance of computed characteristics with the original 

ones. We successively determine the required model data (flow, dispersion, adsorption, heat transmission). Also we test the 

reliability of the obtained model parameters by choosing different starting parameters in the iteration procedure and changing 

the level of added noise. These facts and the sensitivity of characteristics on model parameters create the ground for suitability 

of suggested experimental scenario. 

 
5.1. Model data and solution 

In our numerical experiments we assume the following model data ([CGS]) 

𝜃0 = 0.38, 𝜃𝑟 = 0, 𝐾𝑠 = 2.4 × 10−4, 𝛼 = 0.0189, 𝑛 = 2.81, 𝐻(0) = 5, 𝑔 = 981, 𝜆𝑣 = 0.03, 𝜆 = 0.1, 𝐷0 = 0.01, 

𝛼𝐿 = 1, 𝛼𝑇 =
1

10
, 𝑐𝑣 = 𝑐𝑚 = 1, 𝜌𝑚 = 1, 𝜎 = 1 and 𝜅 = 0.05. 

To determine the transmission coefficients 𝜎 and 𝜆, we consider the original temperature of sample 90°C and the 

temperature of infiltrated water 10°C. The water infiltrates through the mantel and we measure the temperature in the center 

on the top of the sample, which is (together with the bottom) flow and temperature isolated. Original sample is almost dry 

(ℎ = −200). The example of original and perturbed characteristic used for determination of 𝜎, 𝜆 is drawn below. 

 

 
 

Fig. 2: Time evolution of the temperature in the center of the sample top (blue) and with random noise (red). 
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The obtained determination results are collected in the following table. 
 

Table 1: Starting points and different optimal values of  𝜎, 𝜆  for different random noises up to 1°C. 

 

𝜎𝑠𝑡𝑎𝑟𝑡 2 2 0.5 0.5 2 2 0.5 0.5 

𝜆𝑠𝑡𝑎𝑟𝑡 0.5 0.5 0.5 0.5 0.05 0.05 0.05 0.05 

𝜎𝑜𝑝𝑡𝑖𝑚𝑎𝑙 0.9498 0.9684 1.0515 1.0529 1.0396 1.0581 0.9407 1.0575 

𝜆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 0.09954 0.10089 0.10119 0.09949 0.10210 0.09933 0.09897 0.09972 

 

The noise 1°C causes defect up to 6%. The flow, temperature and adsorption influence at the infiltration time  

𝑡 = 100𝑠 with same boundary conditions as before with 𝐶𝑤 = 0.035 in inflow water are drawn in the figure below. 
 

 
 

Fig. 3: Water flow, water temperature, matrix temperature, dissolved concentration in the water and adsorbed concentration in the 

matrix at 𝑡 = 100𝑠 and time evolution of concentration of the outflowed water in the collector chamber. 

 
6. Conclusion 

Numerical modelling of heat and mass transport into unsaturated porous media is discussed. The mathematical 

model includes heat and contaminant transport with heat exchange and adsorption. The adsorbed contaminant and the 

temperature influence the hydraulic permeability and the change of the porosity. Efficient numerical method is 

developed on the base of operator splitting, flexible time discretization and finite volume method.  

A laboratory experiment scenario is proposed to determine the heat transmission coefficient and heat conductivity 

in porous media matrix. In numerical experiments, the efficiency of the numerical method is demonstrated. 
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