
Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering (MCM'19) 

Lisbon, Portugal – August, 2019 

Paper No. HTFF 177 

DOI: 10.11159/htff19.177 

HTFF 177-1 

 

Stokes-Einstein-Debye Relation: A Check of Validity for Proteins in 
Nanoconfinement  

 

Navaneeth Haridasan1, Sridhar Kumar Kannam2, Santosh Mogurampelly3, Sarith P Sathian1 
1Indian Institute of Technology Madras 

 Chennai - 600036, India 

navaneethharidasan@gmail.com; sarith@iitm.ac.in 
2Swinburne University of Technology 

Hawthorn, Victoria-3122, Australia 

urssrisri@gmail.com 
3Temple University 

Pennsylvania -19122, USA 

santoshcup6@gmail.com 

 

 
Abstract - Combined kinetic theory-hydrodynamics treatment has been proven effective in the prediction of biomolecule dynamics, 

generally if a single biomolecule is present in the bulk solvent. But the validity of such a theory in many physiological conditions is 

controversial. In the present study, a sample protein surrounded by other large biomolecules is approximated as the protein in a cylindrical 

nanopore. The hydrodynamic radius of the protein is chosen as an indicator to check whether one of the widely used kinetic theory-

hydrodynamics relation namely Stokes-Einstein-Debye relation, is genuine for confined conditions of the protein. It has been found that 

Stokes-Einstein-Debye relation cannot be satisfied by the protein if confinement dimensions are very close. The reason for the violation 

can be attributed to van der Waals interaction between pore and the protein. 
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1. Introduction 
From the pioneering works of Einstein on kinetic theory [1], it has been well understood that a large solute in a 

homogeneous solvent, due to collisions with solvent molecules, is far from being stationary and diffuses randomly. This 

diffusional motion known as Brownian motion, quantified as diffusion coefficient D, is coupled to the microscopic form of 

friction coefficient given by: 

 

𝐷 =
𝑘𝑏𝑇

𝜁
 

 

(1) 

where, kb is the Boltzmann constant, T is the temperature and 𝜁 is the microscopic friction coefficient. In the limit of low 

Reynolds number or creeping flow, the microscopic friction coefficient can be defined using classical hydrodynamics or 

specifically, Stokes law [2]. The friction coefficient related to translational motion in the limit of creeping flow is given by: 

 

𝜁 = 𝑓𝜋𝜂𝑟 
 

(2) 

where, η is the solvent viscosity, r is the radius of solute and f = 4 or 6 based on slip or no-slip boundary condition respectively 

on the surface of the solute. Eqn. (2) is known as the Stokes-Einstein (SE) relationship. Eqn. (1) is also applicable for 

rotational diffusion of a large solute in the solvent. The Eqn. (1) can be rewritten to account for the rotational friction 

coefficient as:   
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𝐷𝑟  =
𝑘𝑏𝑇

8𝜋𝜂𝑟3
 

 

(3) 

Eqn. (3) is commonly known as Stokes-Einstein-Debye (SED) relation [3], left-hand side of which is the rotational diffusion 

coefficient. Even though SE and SED equations are derived from a classical hydrodynamic perspective, it is valid for many 

microscopic systems. One such instance is a biomolecule-solvent system, solvent typically being water. 

An important aspect of SE and SED equation is that transport and structural properties of the solute can be related. With 

an a priori knowledge of viscosity of the solvent and temperature of the system, the size of the solute can be calculated from 

the diffusivity or vice versa. Often the solute, which may be a biomolecule such as protein or DNA, may not have a perfect 

spherical shape and thus r represents an approximate measure of biomolecule size, commonly known as Stokes radius or 

hydrodynamic radius (rh). It has been reported in the literature that diffusivity is underestimated when the hydrodynamic 

radius is calculated based on the molecular volume of the biomolecule [4]. To alleviate the discrepancy, hydrodynamic radius 

based on the hydrated volume of the molecule can be used. The hydrated volume consists of the biomolecule and few layers 

of mobile solvent molecules in biomolecule’s immediate vicinity.  

A biomolecule seldom exists in the solvent as a single entity but is surrounded by other soluble biomolecules in a natural 

biological environment. The presence of other biomolecules in the neighborhood, generally known as macromolecular 

crowding, influences the structure and dynamics of the biomolecules and in turn their functions. When the crowding agents 

(surrounding biomolecules) are substantial compared to the biomolecule under consideration, the crowding can be 

represented by confinement. Confinement in a biological sense implies limiting a biomolecule within a fixed boundary. For 

a low concentration of the crowding agents, the macromolecular crowding can be approximated by cylindrical confinement 

[5]. It is of interest to us to examine whether the classical hydrodynamic treatment combined with the kinetic theory of 

Brownian motion is valid for physiological conditions of biomolecule existence. Since a stronger relationship exists between 

structure and transport properties through SED relation (D α 1/rh
3), we choose the same equation as the basis for our 

investigation. 

 

2. Methods 
The first step of our investigation is to examine whether SED equation is valid for a sample biomolecule in water as the 

solvent, after which the critical question of whether SED equation is correct for a biomolecule in confinement can be 

addressed. As a sample molecule, we choose a globular protein, ubiquitin (Protein Data Bank id: 1UBQ) which is found in 

almost all biological entities and is responsible for marking proteins for degradation. To simulate the biological environment 

with ubiquitin in bulk solvent, we resort to the method of molecular dynamics (MD). Classical molecular dynamics 

simulations represent atoms of a molecule as point particles which interact with each other based on a forcefield. A typical 

forcefield defines the potential energy of the system, which consists of bonded (bonds and angles) and non-bonded interaction 

(van der Waals and electrostatic) between the atoms. Subsequently, Newton’s second law of motion is used to estimate 

acceleration, velocity, and position of the point particle with respect to time. The entire system evolution can thus be tracked 

in terms of position and velocities of individual point particles. 

The first and foremost quantity to be calculated for verifying SED relation is the rotational diffusion coefficient of the 

biomolecule. Once the rotational diffusion coefficient Dr of the biomolecule is calculated at a given temperature and solvent 

viscosity, hydrodynamic radius (rh) of the biomolecule can be calculated, which will serve as the reference value indicating 

the validity of SED relation. With the assumption that the angular displacement of the biomolecule is minimal due to 

collisions with solvent molecules, rotational diffusion of a biomolecule in the solvent is governed by [3]:  

 

𝜕𝑐(𝑢, 𝑡)

𝜕𝑡
= 𝐷𝑟𝛻2𝑐(𝑢, 𝑡) (4) 

 

where, c(u,t) is the probability of finding a unit vector u attached to the biomolecule at time t. We resort to the isotropic 

approximation (biomolecule considered as a perfect sphere) of rotational diffusion for the sake of simplicity and ease of 

calculation. The solution to Eqn. (4), diffusion equation in spherical coordinates, with isotropic approximation, is given by 

[6]: 
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𝐶𝑙(𝑡)  = 〈𝑃𝑙[𝑢(0). 𝑢(𝑡)]〉 = 〈𝑃𝑙[𝑐𝑜𝑠 𝜃(𝑡)]〉 =  𝑒  −𝑙(𝑙+1)𝐷𝑟 𝑡  =  𝑒−𝑡/𝜏𝑙  (5) 

 

where, Cl represents the time correlation function of unit vector u, Pl is the Legendre polynomial of rank l, and τl is the 

rotational correlation time of the biomolecule. Legendre polynomial of the second rank (l = 2) is most widely used to estimate 

rotational diffusion coefficients in experimental methods such as Nuclear Magnetic Resonance (NMR) spectroscopy and 

fluorescence depolarization anisotropy measurements (cite). Hence the second rank Legendre polynomial is used for the 

calculation of the rotational diffusion coefficient in Eqn. (5). Our choices of the unit vector u are the three mutually 

perpendicular principal axes of moment of inertia. Evolution of each one of the principal axes of inertia with respect to time 

is used in Eqn. (5) and all of them are averaged to obtain a single time correlation function, C2  [7]. 

 
2.1. Simulation Details 

It has been reported in the literature that for an accurate prediction of the rotational diffusion coefficients, simulation 

time should be more than two orders of the rotational correlation time. From NMR experiments [8], τ2 comes around 5 

nanoseconds (ns) and hence more than 500 ns (0.5 microseconds) simulation time is required. With conventional all-atom 

molecular dynamics, significant computational resources are necessary to reach the time scales of microseconds with the 

particular system under consideration. One of the methods to reach microsecond timescales is by reducing the number of 

point particles to represent the system and hence reducing the number of interactions also. The method of assigning more 

than one atom to a point particle within the framework of MD is known as coarse-grained molecular dynamics (CGMD). 

CGMD using MARTINI forcefield [9] implemented in GROMACS molecular dynamics package [10] is selected as the 

method of simulation. In MARTINI forcefield, four solvent atoms are approximated as one point particle or bead and protein 

is coarse-grained based on its residues (amino acid groups). It is to be noted that water is modeled as a chargeless bead using 

this forcefield and hence electrostatic interactions of the solvent are not considered in the simulation. 

For assessing the validity of SED equation for the protein-solvent system, we simulated a single protein in solvent boxes 

of varying size. For bulk simulation, cubic simulation boxes with side lengths of 7.4 to 26 nm were chosen. The protein was 

first constrained to the center of the simulation box, after which simulation box was filled with solvent particles. The system 

is then simulated at constant pressure and temperature of 1 bar and 300 K with periodic boundary conditions in all three 

directions for 20 nanoseconds with a timestep of 10 femtoseconds (10-15). After equilibration of the system, the constraint 

on the protein was removed and  1 microsecond production run with 20 femtoseconds timestep was performed at constant 

temperature (300 K) and volume of the simulation box. To add a nanoconfinement to the existing system of biomolecule-

water, solvent particles outside the desired nanopore region were kept rigid. Thus the interaction parameters of the nanopore 

surface are the same as that of the solvent. In confined simulations, the nanopore length is kept fixed at 20 nm while the pore 

radius is varied between 2.5 to 10.0 nm. The equilibration and production run procedure is similar to the bulk system. The 

solvent viscosity in nanopores has been calculated in one of the previous works using MARTINI forcefield [11] and is taken 

as 0.00101 kgm-1s-1 for both bulk as well as nanopore in this study.    

 
2.2. HYDROPRO 

A reference value of rh is essential to check whether the SED relation is valid for the protein in bulk solvent. Since the 

rotational diffusion values obtained from different experimental techniques vary widely in the range, we rely on the 

predictions of a computer-program HYDROPRO [12]. HYDROPRO has been considered ‘gold standard’ in predicting 

hydrodynamic properties of rigid biomolecules based on atomic resolution specified by Protein Data Bank (PDB) structure 

file. The program output has been used as an ‘experimental’ value for the rotational diffusion coefficient in one of the 

previous studies [7]. As specified in the same literature, the hydrodynamic radius of the beads used for constructing the 

model was set to be 0.32 nanometer (nm). The reference value of the hydrodynamic radius of the protein, rh was calculated 

based on Eqs. (1) - (3) with no-slip boundary condition as:    

 

𝑟ℎ = √
3

4

𝐷𝑡

𝐷𝑟
 (6) 
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where, Dt is the translational diffusion coefficient, and Dr is the rotational diffusion coefficient of the biomolecule predicted 

by HYDROPRO. A value of 1.67 nm was obtained from the above equation for the protein ubiquitin with PDB id 1UBQ.  

           
3. Results and Discussions 
3.1. Rigid Body Assumption 

      To compute rotational diffusion using Eqn. (5), it is necessary to obtain principal axes of inertia for every frame in the 

protein trajectory. It is assumed that the protein is rigid enough not to allow principal axes of inertia to change during the 

simulation. To justify the rigid body assumption, the structural conformation of the protein should be investigated. This 

check is done through the analysis of two quantities in the present study, namely root mean square deviation (RMSD) and 

radius of gyration (rg). RMSD variation indicates the conformational change from a reference structure while the radius of 

gyration depicts the characteristic dimension corresponding to the globular approximation of the protein. RMSD and rg are 

computed according to the following relation: 

 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑(𝑥𝑖(𝑡) − 𝑥𝑖

𝑟𝑒𝑓
)2

𝑁

𝑖 = 1

    (7) 

 

𝑟𝑔 = √
1

𝑁
∑(𝑥𝑖(𝑡) − 𝑥𝐶𝑀

𝑟𝑒𝑓
)2

𝑁

𝑖 = 1

 (8) 

 

where, xi corresponds to the position vector of ith bead of the protein, N indicates the number of beads constituting the protein, 

ref means the reference structure of the protein, which is the structure of the protein at the start of production run and xref
CM 

indicates the position vector of the protein center of mass in the reference structure of the protein. Figure 1 depicts the 

variation of RMSD and rg of the protein in both bulk and pore cases for the entire simulation trajectory of 1 microsecond. 

For the bulk case, the largest simulation box size is considered while pore radius of 2.5 nm is considered from the pore 

simulations.  

      It is clear from figure 1 that the structural variations from the reference structure are minimal when protein is in bulk as 

well as in nanopore since the values of RMSD and rg remains almost constant. Hence rigid body assumption is used in the 

present study for assessing rotational diffusion coefficient using the evolution of inertial principal axes. The radius of gyration 

of the protein is found to be ~1.2 nm and the same is used as the characteristic property for representing protein dimension 

throughout this study.  
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 Fig. 1: Root Mean Square Deviation (RMSD) and radius of gyration (rg)of the protein for the entire simulation trajectory. Both pore 

(rp=2.5 nm) and bulk (L = 26 nm) cases are analyzed for the variation in RMSD and rg. 

 
3.2. Validity of SED Equation in Bulk 

We computed the hydrodynamic radius of the protein, rh in solvent for different box sizes i.e., by varying the number of 

solvent molecules contained in the box. Figure 2 shows the values of rh for different box sizes denoted by the ratio L0/L, L0 

being the least box length of 7.4 nm. The average value of rh obtained from the bulk simulations is 1.65 ± 0.024 nm, which 

agrees well with the reference value of 1.67  nm obtained from HYDROPRO. This result indeed proves that SED relation is 

valid for the sample protein in water as a solvent.   

  
  Fig. 2: Hydrodynamic radius of protein, rh for different box sizes. L is the box length while L0 is the minimum box length of 7.4 nm. 

 

 3.3. Hydrodynamic Radius Variation of the Protein in Nanopores 
Hydrodynamic radius of the protein in nanopores was calculated subsequently to verify whether SED relation is valid 

for the protein in nanopores. The values of the hydrodynamic radius when pore radii rp is varied from 2.5 to 10.0 nm are 

shown in figure 3. The figure also shows the average value of rh for the protein in bulk solvent. For most of the pore radii 

considered in the simulation, rh value for the protein in the pore is close to the corresponding bulk value. The least three 

values of pore radii, 2.5, 3 and 3.5 nm shows noticeable deviation from the bulk value. This shows a clear violation of SED 

behavior when protein is present in tighter confinement or when large crowding agents are closer to the biomolecule.      
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  .  

Fig. 3: Hydrodynamic radius of protein, rh for varying pore radii rp. Pore radii are normalized by protein radius of gyration rg in x axis. 

 

It has been reported previously that if conventional SE relation cannot be satisfied with a single hydrodynamic radius, 

one should look for the connection of intermolecular interactions with effective hydrodynamic radius [13]. Since both SE 

and SED equations are complementary to each other, we next probe into intermolecular interactions that occur within the 

system. Intermolecular interaction that affects protein dynamics in this particular study consists of van der Waals (vdW) 

interaction between protein-solvent and protein-nanopore. The variation of both theses intermolecular interactions are shown 

in figure 4 for different pore radii. 

 

 
Fig. 4: Van der Waals (vdW) interaction that affects protein dynamics as a function of pore radii. On the y axis: (a) The interaction 

between solvent and protein occurring inside the pore normalized by pore volume Vp (b) Pore-protein interaction. For brevity, rp  6, 8 

and 10 nm cases are not shown in the figures. 

 

Figure 4(a) shows the van der Waals interaction between protein and solvent occurring inside the pore normalized by 

the pore volume Vp. It can be seen that the interaction strength increase linearly with a decrease in pore radii. Since the 

solvent is interceding protein and pore, the interaction between protein and solvent is influenced by pore-solvent interactions.  

The increasing trend thus indicates a scale up in the interaction energy between pore and protein mediated through the solvent 

as pore radii decrease. No clear correlation between solvent-mediated interactions and hydrodynamic radius can be drawn 

from figures (3) and (4a). On the other hand, figure (4b) shows the direct interaction between pore and protein which is non-

zero for the last three pore radii considered in the study. An excerpt of figures (3) and (4b) is given in table 1. A variation in 

the hydrodynamic radius from bulk value is observed when the pore-protein vdW interaction is non-zero. Thus, it can be 
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concluded from table 1 and figures (3) and (4) that direct protein-pore van der Waals interaction is responsible for the 

violation of SED relation in nanopore rather than solvent-mediated interactions between pore and the protein. 
 

Table 1: Van der Waals (vdW) interactions between pore and protein and hydrodynamic radius (rh) of the protein for different 

pore radii. The first three vdW interaction values are non-zero which can be related to the increase in rh in smaller pores.  

 

Pore radius, rp 

(nm)  

vdWpore-protein (kJ/mol) Hydrodynamic 

radius, rh (nm)  

2.5 -8.79 4.19 

3 -0.22 2.06 

3.5 0.000437 1.77 

4 0.0 1.64 

4.5 0.0 1.61 

5 0.0 1.63 

 

4. Conclusion 
Biomolecules seldom exist as a single entity in its natural environment but are surrounded by other soluble molecules. 

The validity of Stokes-Einstein-Debye (SED) relation in the limit of very large biomolecules surrounding a specific protein 

is investigated through protein in cylindrical confinements. The proximity effects of the surrounding biomolecules on the 

protein are recreated through varying the pore radii. It was found that when the confinement is tight or large biomolecular 

crowders are very close to the protein, SED relation is violated. The main reason behind the deviation from the SED relation 

can be related to the direct protein-pore or protein-crowder intermolecular interactions. While solvent-mediated interactions 

between crowders and protein (pore and protein)  do increase with a decrease in proximity, the influence of solvent-mediated 

interactions on rotational diffusion coefficient is marginal and in turn, does not contribute to the violation of SED equation.     
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