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Abstract - A system of differential equations describing main regularities of mass transfer process in critical regimes of two-phase 

flows is formed. Using this system, several similarity criteria are determined. Equations of discrete-stationary solid phase distribution 

in such flows along the channel height are derived. The analysis of this system allowed us to define optimal conditions of the process of 

bulk materials classification in vertical channels.   
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1. Introduction 
We call two-phase flow regimes critical, if a certain part of solid phase moves upwards with the flow, and another part 

settles down against the flow. This process is most widely used in industry for bulk materials fractionating according to 

particles sizes or densities.  

Longstanding study of fractionating processes has revealed a number of interesting empirical regularities [1]. It is 

established that the extraction of particles of narrow size classes is invariant with respect to the initial granulometric 

composition of the material. It means that each size class is separated in the flow independently of other size classes. This 

regularity is valid at the concentrations of solid matter in the air flow up to 3 kg/m
3
 and in water – up to 3 kg/liter.  

     However, here particles of various sizes intensely interact with each other and with the channel walls [1,2,4]. 

     Present-day gravitational separation apparatuses make it possible to reach sufficiently high separation efficiency by the 

boundary up to 10 micron. 

     Let us examine the relation between the concentration and the number of particles in real conditions for a narrow class, 

for example, with the average particle size equal to 30 micron. 

     Let the particles density be ./2600 3mkg  If the consumed concentration 
3/2 mkg , volume concentration of 

solids in the air flow is insignificant and amounts to 







 

2600

2
107.7 4   only. 

     One 30-micron particle weighs .103674.0 11kg  We assume that the percentage of such particles in the initial 

composition is 10%; then their content in one cubic meter is:  

                                      .104,5
103674.0

2.0 9

11






n   

     It means that one cubic meter of air contains 5,4 milliards of such particles, which is comparable with the number of 

molecules in a rarefied gas. To solve many problems related to gaseous systems, the notion of an infinitesimal volume is 

used. Therefore, we use a similar approach in this case [3] on the basis of some well-grounded assumptions. 

 

2. Balance Model  
A schematic diagram of a gravitational separator is presented in Fig. 1. The initial material is fed to a vertical 

channel. A moving medium flow moves upwards in the channel at the average velocity w. The fine product is transferred 

upwards, and the coarse one settles down, with particles of certain size classes being divided in various proportions 

between these products.  
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Clearly, the finest classes are practically totally carried upward by the flow, while the coarsest classed are almost 

totally settled down. Everything depends of the ratio between the flow velocity and particle sizes [1]. 

     Classes of medium-size particles are divided in a smaller proportion. We can even imagine (which is quite realistic) 

such class of particles which is divided half-and-half between both outlets.  

     We consider an infinitesimal contour, which is immobile with respect to channel walls (Fig. 2). It represents a 

parallelepiped with the edges .;; dzdydx  

     Let us consider a flow of particles of a certain narrow size class j per an infinitesimal period of time dt along the axis z. 

At the level of the lower surface dydx , the content of particles of this narrow size class in a unit volume is n (for 

convenience, we omit the index j in further derivations). 

     During the time period dt , dtdxdynvz   particles enter the contour through this face, where 
zv  is the velocity of 

particles of the given size along z  axis. The number of particles leaving the contour through the upper face is 

dxdydtdz
z

nv
nv z

z 
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     The difference between these two flows is  

,
)()(

dVdt
z

nv
dxdydzdt

z

nv zz









  

where dxdydzdV   is the volume of the contour. 

We can get similar differences for other axes, too, in the form 

dVdt
x

nvz






)(
    and     dVdt

x

nvy






)(
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     Let us find the total change in the number of particles within the contour during the time period .dt  We assume that at a 

certain initial moment of time t , the number of particles within the contour amounts to  .ndV  Since n  can vary both with 

coordinates );;( zyx  and with time ),(t  the change in this number by the moment dtt   amounts, in partial derivatives, 

to   

dVdt
t

n
dt

t

ndV








 )(
 

Now we collect all balance elements within the same equation reducing by .dVdt  As a result, we obtain 
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Clearly, the integration of (1) with specified initial conditions (single-valuedness condition) leads to the conservation law. 
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3. Transverse transfer 
     Besides the longitudinal particles transfer, a transverse migration of particles takes place in a two-phase flow. It has 

been studied since long ago and reduced to the phenomenon of diffusion [4]. This assumption is rather relative, since it is 

caused not only by the gradient of particles concentration in various points inside the flow.  

     This phenomenon is also affected by the velocity gradient, collisions of particles, turbulence and other causes.  

     We examine a vertical axis z in the flow and a motionless contour (Fig. 2). 

     We assume that the particles concentration at the left face is ,n  and at the right face – .dx
x

n
n




  Then, due to said 

reasons, particles transfer takes place. Their arrival to the volume dv  during the time dt  through the left face is expressed 

as follows: 

,dxdydz
x

n
D



  

where D  is the proportionality factor (diffusion coefficient). 

Their exit through the right face is 

dydzdtdx
x

n
n

x
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The difference between these flows amounts to  

dVdt
x

n
Ddxdydzdt

x

n
D
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Similar flows along other axes y  and z  are also possible, and the differences along these axes are 

dVdt
y

n
D

2
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   and   dVdt

z

n
D

2
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The total difference in the amounts of particles at the contour inlet and outlet in three directions amounts to  

ndVdtDdVdt
z
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On the other hand, as a result of the transverse transfer, in the contour with the volume dV  the particles concentration is 

changed by dndV . 

Now we bring all balance elements together into one equation and, after reducing by ,dVdt  obtain 

nD
t

n 2



 

Since n  changes with coordinates and time, we can write: 

dz
z
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We divide both parts of the latter equality by dt , make the following substitutions 

;xv
dt

dx
      ;yv

dt

dy
      zv

dt

dz
  

and finally obtain: 

nD
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4. Similarity criteria for mass transfer process 
     For a direct solution of equations (1) and (2) in the general form, actual data are lacking. Therefore, we try to do it using 

similarity criteria for the process under study. 

     According to classical definitions, two physical phenomena are similar, if analogous physical characteristics in similar 

points of geometrically similar systems differ only by constant factors (similarity factors) [5]. The mathematical 

description of such systems should be identical. 

     First, we consider the balance equation (1). 

     For two similar points of similar systems, we can write: 

0
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Two phenomena are similar, if the following equalities are valid for each pair of similar points:  
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        i.e. 

;21 nmn n     ;21 tmt t     ;
21 znz vvv

v
      emzz 21                     ( 5 ) 

Each similarity factor serves as a scaling characteristic of the respective physical magnitude. The similarity factor denoted 

by em  is common for all coordinates. 

Equation (3) can be written in the form: 
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The latter equation (6) describes the system (3) having characteristics of the system (4). 

Similar systems should be described by the same equations. It is possible only if the similarity factors in equation (6) can 

be factored out (or reduced). It means that they should be equal, i.e.    

e
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Clearly, it can be reduced by nm  and obtain 

e

t

t m

m

m
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Now we substitute the values of similarity criteria from (5): 
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and bring together magnitudes with the same indices: 

idem
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zzz


2

2

1

1 21
                                         ( 7 ) 

     The last ratio in (7) has no indices, which implies the validity of this equality for all similar flows. Note that this ratio is 

dimensionless; it is known as homochronism criterion and denoted by the symbol 

z

tv
H z0                                                            ( 8 ) 
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     This criterion reflects the ratio between competing effects in the process under study,–i.e. particles accumulation and 

transfer in the target volume. The criterion (8) is an important physical parameter allowing us to establish the process 

relaxation time and the transition to a stationary mode. It stops operating in stationary modes. 

Let us examine Equation (2) from the same standpoint. It is sufficient to represent it in the following form: 
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     Let us write equalities similar to (5) for thus equation: 

          ;21 nmn n      ;21 tmt t       ;
21 zvz vmv        ;21 zmz e     

21 DmD D   

We can write this equation using symbols of the similar system as follows  
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Here the similarity factors should be also equal, so that we could factor them out, i.e.  
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We can obtain three similarity criteria: 

1)                                               ,
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This is the same homochronism criterion: 
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We can write: 
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This criterion can be also used for describing non-stationary hydrodynamic mass transfer processes:  
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Basing on this, we can write: 
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     This criterion shows the relation between the amounts of diffusion-transferred matter and velocity fluxes. 

     By combining these parameters, other criterial relations can be derived. For example, multiplying expressions (8) and 

(10), we obtain: 

idem
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                     ( 11 ) 

    This dependence is called Zhukovsky's criterion ).(Zh   

    Thus, the solution of the mathematical mass transfer model in the critical regime of two-phase flows has given us a 

number of generalized parameters for the description of such flows.  

     However, the importance of the derived differential equations (1) and (2) extends further, - e.g., their direct solution is 

of certain interest. And although it is quite clear that it is impossible to get their general solution due to the lack of 

necessary data, their partial solutions can also provide important information.   

 
5. Partial solution of principal differential equations 
     Under certain conditions, Equations (1) and (2) can be significantly simplified. First, a stationary process, where all 

characteristics of a two-phase flow are independent of time, is of utmost interest. Under such conditions, 
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     Secondly, we can restrict ourselves with a quasi-one-dimensional model of transfer along z  axis, because it defines the 

result of separation.  

     No reliable experimental data are available as yet for establishing the character of transfer along transverse axes ).,( yx  

Therefore, in this solution we assume that particles concentration varies only with height, and remains the same over the 

cross-section at any level; besides, they are uniformly distributed over this cross-section.  

In this case, for (1) 
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while for (2) this condition is written as follows: 
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The following remains from Equation (1):  
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and from Equation (2): 
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     Mean flow velocity in a channel with an invariable cross-section is constant; therefore, these two expressions are 

identical and can be written as  
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0
dz

dn
                                                        ( 12 ) 

     This dependence reflects a certain condition of optimal distribution of solid particles in a flow with respect to the 

channel height. 

     The solution of Equation (12) allows an optimal organization of the process of gravitational separation of particles in 

vertical channels.  

 
6. Conclusions 
    1. On the basis of mass transfer regularities in critical two-phase flows, several similarity criteria for this process are 

determined.  

2. It is found that in case of one stage, 5.0k  corresponds to the optimality condition. 

3. It is established that for an efficient separation of bulk materials, they should be initially fed into the middle portion of 

the channel.  

4. It is demonstrated that the separation efficiency depends on the channel height. However, this dependence is limited. An 

excessive increase in height does not provide a proportional growth of the effect.        
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Figure captions 
 

Fig. 1. Schematic diagram of gravitational separator. 

 

Fig. 2. Material flow through the contour. 

 

Fig. 3. a – mass transfer between stages;  

b – separation diagram within one stage. 

 

Fig. 4. Fractional separation )(xF f  dependence on the distribution parameter ).(k  

  
 


