Effects of Migrating Inhibitors on Corrosion of Reinforcing Steel in Aggressive Environment

Albana Jano¹, Valbona Hoxha¹, Alketa Lame² and Efrosini Kokalari²

¹Polytechnic University of Tirana, Tirana/Albania albana.jano@fin.edu.al, bonahoxha@gmail.com ²University of Tirana Tirana/Albania alketalame@fshn.edu.al, efrosinikokalari@fshn.edu.al

Abstract. The durability degradation of reinforced concrete structures is one of the biggest problems hindering the breakthrough in engineering and has attracted a great deal of attention in the field of civil engineering. Corrosion issues of internal steel reinforcement have become a top priority in durability treatment since they seriously threaten the durability and sustainability of the structure. Migrating corrosion inhibitors (MCIs) are a good alternative to prevent or control reinforcing steel corrosion because of their moderate cost and easy application compared with other preventive methods. Our study concerns the investigation of the protective effect of MCI; different concentrations of butanol-1 amin-2 refer 1g/L lysine. Materials under investigation are two kind of low allow carbon steel marked as: Steel 39, Steel 44. The corrosion media is sulfuric acid in presence of chloride ions, in form of NaCl (H_2SO_4 1M + Cl⁻ 10⁻³M). Potentiodynamic polarization method is used for inhibitor efficiency testing. Potentiodynamic polarization measurements showed that the presence of MCI in acidic solution decreases the corrosion protection of steel 39 presents protection efficiency 90.52% and for steel 44 present protection efficiency 75.98% classifieds as good for this extreme aggressive conditions.

Keywords: migration inhibitor, potenciodynamic polarization, acid media, carbon steel

1. Introduction

Corrosion of reinforcing steel is a major degradation of failure in reinforced concrete structures leading to financial losses, safety risks and environmental impact. The understanding of the mechanisms of the degradation processes of concrete allows us to improve the design of structures to enhance durability and extend service-life.(1) Corrosion of concrete armature caused by acid media penetration of the coastal areas in it, through chemical and mechanical cracks, is responsible sometimes for concrete failure, building failure and of course environmental pollution. Besides the mitigation of chemical and mechanical cracks adding migration corrosion inhibitors (MCI) to concrete mixes is a simple, time-proven, cost-effective and environmentally friendly method of achieving significant enhancement in durability.(2) Use of MCI will be for corrosion protection of concrete steel bars a good choice, penetrating to metal surface together with aggressive media. MCI's provide protection because of their ability to migrate to the depth of the metal, and form a protective, molecular layer on steel when they come into contact with it. Most reviewers present amino-acids as a good inhibitor of acidic environment (H₂SO₄) in presence of Cl⁻ ions, and amino-alcohols as good migrator agents. In our study we have investigated the inhibiting effect of lysine (amino acid) (1g/L) in presence of different concentrations of amino alcohol (butanol-1 amin-2) for two kind of steel: steel 39 and steel 44.

2. Eksperimental

The aim of this study is the investigation of synergic effect for different concentration of 2- amino 1- butanol (aminoalcohol), as migrator agent, refer 1g/L L-lysine (amino acid) in protection efficiency again corrosion in these aggressive media for steel 39 and steel 44.

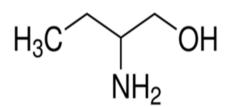


Fig.1: The structure of lysine (inhibitor)

Fig.2: The structure of 2-amino-1-butanol (migrator)

2.1 Material under Investigation, Samples Preparation and Methods

Material under investigation are two marks of low alloy carbon steel, manufactured in KURUM factory, Elbasan, respectively St39, St44, intended for concrete armor.

Table 1: Composition of low alloy carbon steel tested.								
Elemen t (Mass- %)	C	Si	Mn	Cr	Ni	Cu	Р	S
Steel 39	0.37	0.17	0.51	0.60	0.60	0.30	0.040	0.040
Steel 44	0.445	0.348	0.780	0.118	0.263	0.324	0.0720	0.0440

The samples used for the potentiodynamic measurements are prepared from steel bars in cylindrical shape with sizes (D=6mm, d=4mm) and fixed inside a Teflon tube with epoxy resin as shown in figure. For the potentiodynamic measurements the steel samples, before fixed inside the Teflon, were polished with emery paper (250 – 1000), cleaned with be distilled water, dried, degreased with acetone, cleaned with be distilled water again, and finally dried.(4,3)

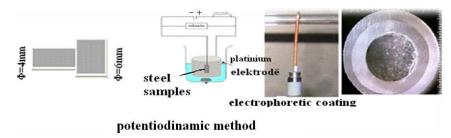


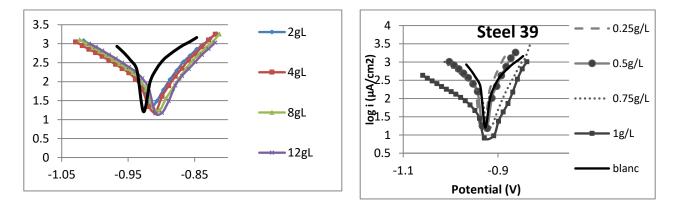
Fig.3: Preparing of the samples for potentiodynamic measurements.

The corrosion media consists in sulfuric acid in presence of chloride ions. The concentration of acid used is 1 mol/L H₂SO₄ and chloride ions are 10^{-3} mol/L Cl⁻ (in form of NaCl) (*imitation of aggressive industrial Coastal atmosphere*). The concentration ratio of inhibitor is present in table 2.

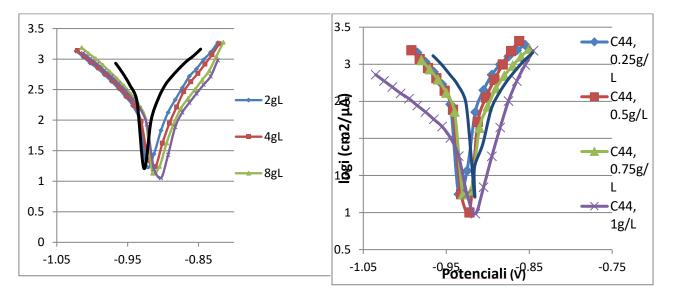
Table 2: The matrix for potenciodynamic measurements.								
Nr.	Concentrations ratio of lysine /2-amino 1-butanol (g/L)							
	Blank	1g/L/2g/L	1g/L/4g/L	1g/L/8g/L	1g/L/12g/L			
1	+							
2		+						
3			+					
4				+				
5					+			

Potenciodynamic measurements were carried out in a typical three-electrode electrochemical cell with an Hg/Hg₂SO₄ saturated K₂SO₄ electrode as a reference electrode and a platinum electrode as auxiliary electrode. potenciostat galvanostat tip TACUSSEL PJT 24-2 is used for potenciodinamic measurements, potencial scan rate is $6x10^{-3}$ V/min (3,5) [Mars G. Fontana et al., 1986], [Robert G. Kelly et a., 2002] Deaerating of the solution was realized using a stream of pure nitrogen inside the solution for 30 min and above solution for 5 min. Corrosion current density determined using the cutting point of Taffel extrapolation line and Faradays law, equation 1 (3,6)[Mars G. Fontana et al., 1986], [Bardal, E., 2004]:

$$V_{corr} = (K * a * i) / (n * D)$$
⁽¹⁾


Where: a - is the atomic weight of the metal (a=56g/mol), i -the current density in (μ A/cm²), n -the number of electrons exchanged during metal dissolution (n=2), D -the density in (g/cm³) (d=7.86g/cm³) and K is a constant which equals to 0.00327 if corrosion rate (V_{corr}) is calculated in [mm/y]. Corrosion inhibitor efficiency calculated by formula 2 (7):

Inhibitor Efficiency(%) =
$$[(CR uninhibited - CR inhibited)/CR uninhibited] \times 100$$
 (2)


Where: CR uninhibited - is corrosion rate of the uninhibited system, CR inhibited - is corrosion rate of the inhibited system. This essentially examines the ratio of the inhibited and uninhibited corrosion rates and expresses this as a percentage.

3. Results

The results for potenciodynamic measurements are given in form of V_{corr} in (mm/year), calculated using corrosion current density (i_{corr}). Corrosion current density is determined using the cutting point of Taffel extrapolation line. Potentiodynamic polarization curves are given in figures 2 (a,b) for steel 39 and in figure 3 (a,b) for steel 44 in de-aerated 1M H₂SO₄ solution with 10⁻³M chloride ions (blank) containing different concentration ratio of 2-amino1- butanol / lysine – a-; and only different concentration of lysine –b.

Fig.4: Potentiodynamic polarization curves for Steel 39 in de-aerated 1M H₂SO₄ solution with 10⁻³M chloride ions (blank) containing different concentration ratio of 2-amino1- butanol / lysine (a); and only different concentration of lysine (b).

Fig.5: Potentiodynamic polarization curves for Steel 44 in de-aerated 1M H₂SO₄ solution with 10⁻³M chloride ions (blank) containing different concentration ratio of 2-amino1- butanol / lysine (a); and only different concentration of lysine (b)

The total results, in form of corrosion rates in (mm/year), calculated using corrosion current density (i_{corr}) and protections efficiency of different concentration of additives against corrosion, are given in Table 3.

Concentration ratio	Mark of steel material					
2-amino 1-	St	teel 39	Steel 44			
butanol/lysine	Vcorr	Prot. Eff. %	Vcorr	Prot. Eff. %		
	(mm /year)		(mm /year)			
Blank	2.32		3.31			
0g/L:1g/L	0.49	78.88	1.03	68.88		
2g/L:1g/L	0.581	74.96	1.131	65.83		
4g/L:1g/L	0.288	87.59	0.949	71.33		
8g/L:1g/L	0.247	89.35	0.822	75.17		
12g/L:1g/L	0.22	90.52	0.795	75.98		

Table 3: Values of Vcorr and Prot.Eff. % for steel 39 and steel 44 in H₂SO₄ 1M and 10⁻³ Cl- solution with and without MCI.

3.1 The inhibition mechanism

The adsorption mechanism for a given inhibitor depends on such factors, as the nature of metal corrosion medium, the pH and the concentration of the inhibitor as well as the functional groups present in its molecule (8).

In case of amino acids used in our study as acidic corrosion inhibitor for low alloy carbon steel, the adsorption on anodic sites, dedicated the free electrons on N and O (of carboxylic group) atoms.

Further, amino group is easily protonated in the acidic medium, so it could be electrostatically attracted to the cathodic sites on steel surface and hinder the hydrogen evolution reaction. Protonated amino group converted from $(-NH_3)^+$ to $(-NH_2)$, which adsorbed in anodic sites of low alloy carbon steel by free electrons of N.

The corrosion inhibition process is based on the adsorption of the amino acid molecules on the active sites and/or deposition of the corrosion products on the alloy surface (9,10). Lysine adsorbs on surface of middle steel this mechanism: the atoms O and N in amino acids serve as active centers for the process of adsorption on the metal surface. Availability of no bonded (lone pair) and p-electrons in inhibitor molecules facilitate electron transfer from the inhibitor to the metal. A coordinate covalent bond involving transfer of electrons from inhibitor to the metal surface may be formed. The strength of the chemisorptions bond depends upon the electron density on the donor atom of the functional group and also the polarizability of the group. When an H atom attached to the C in the ring is replaced by a substituent group ($-NH_2$, or COOH) it improves inhibition (11).

4. Discussion

By observation of shapes of the anodic and cathodic polarization curves in the presence of lysine + butanolamina provides information about the inhibitor action in corrosion processes. The examination of figure 2 –a- and figure 3 -a- shows that the MIC (mix of amino-alcohol and lysine) functioned via a mixed-inhibition mechanism; it worked as well as anodic and cathodic inhibitor. The (amino-alcohol), as migrator agent, seems to play an important role in specifying the areas of anodic adsorption of inhibitor (the rest potential become more positive increasing the concentration of amino-alcohol) and improve the anodic surface coverage (anodic branch come down increasing the concentration of amino-alcohol) (12, 13). Clearly the presence of amino-alcohol as migrator agent improves the inhibition effect of lysine, even in low concentration.

5. Conclusions

The MIC (mix of amino-alcohol and methionine) functioned via a mixed-inhibition mechanism. Cathodic: Amino group protonated in the acidic media electrostatically attracted to the cathodic sites on steel surface and hinder the hydrogen evolution reaction.

Anodic: Adsorption on anodic sites, dedicated the free electrons on N and O (of carboxylic & hydroxyl group) atoms.

The presence of amino-alcohol as migrator agent improves the inhibition effect of lysine, specifying the areas of anodic adsorption of inhibitor and improves the anodic surface coverage.

The corrosion protection efficiency of MIC (combination of an amino-alcohol and amino-acid) for steel 39 and steel 44 corrosion in 1M H2SO4 solution in presence of 10-3Cl- ions realized in ratio 12g/L amino alcohol: 1g/L amino acid was respectively 90.52% and 75.98% and corrosion rate was respectively 0.22 mm/year and 0.795 mm/year.

6. References

- [1] B. Bavarian, L. Reiner, Corrosion Protection of Steel Rebar in Concrete with Optimal Application of Migrating Corrosion Inhibitors, MCI 2022, 2003, 2-3.
- [2] B. Bavarian, L. Reiner, *Corrosion Protection of Steel Rebar in Concrete using Migrating Corrosion Inhibitors*, MCI 2021 & 2022, 2002, 2-3.
- [3] M. G. Fontana, *Corrosion Engineering*, Third Edition, ISBN 0-07-021463-8, Printed in the United States of America, 1986, 171-174; 153-164; 198-202; 172.
- [4] *M. Abdallah, Guar Gum as Corrosion Inhibitor for Carbon Steel in Sulfuric Acid Solutions*, Portugaliae Electrochimica Acta 22, 2004, 161-175.
- [5] R. G. Kelly, J. R. Scully, D. W. Shoesmith, R. G. Buchheit, *Electrochemical Techniques in Corrosion Science and Engineering*, United State of America, 2002, 139-146, 361-371.
- [6] E. Bardal, *Engineering Materials and Processes, Corrosion and Protection*, Springer-Verlag limited ISBN 1-855233-758-3, London Berlin Heidelberg, 2004,5-10.
- [7] E. G. Azero, L. L. Lopes, C. T. Andrade, *Extraction and Solution Properties of the Galactomannan from the Seeds of Cassia-Javanica L*, Polymer Bulletin 39, 1997,621 625.
- [8] E.E. Oguzie, Y.Li, F.H. Wang, J., 2007, Colloid Interface Science 310; 90.
- [9] W.A. Badawy K.M. Ismail, A.M. Fathi, *Applied Electrochemistry*. 2005, 35; 879.
- [10] G.Bereket, A. Yurt, Corrosion Science 43; 1179, 2001,.
- [11] Azza El-Sayed El-Shenawy, Corrosion inhibition of lysine as basic amino acid on 316L stainless steel in 0.5 M H₂SO₄ solution, Journal of American Science, 2011, <u>http://www.americanscience.org</u>
- [12] A.Lame, E. Kokalari, A. Jano, Migration Corrosion Inhibitor Agains Premature Failure Of Reinforced Concrete Caused By Penetration Of Aggressive Environment, International Journal Of Ecosystems And Ecology Science (IJEES), 2014, ISSN: 2224-4980, Volume 4/3, page 491-498.
- [13] A. Jano, A.Lame, E. Kokalari, *Lysine As A Corrosion Inhibitor For Low Alloy Carbon Steel In Acidic Media*, 2014, Seria: Chimie, Ovidius University Annals Of Chemistry, Vol.XXV Year XXV 2014, Number 1, ISSN:1223-7221.